Haar wellen - Übersetzung nach Englisch
Diclib.com
Wörterbuch ChatGPT
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz ChatGPT

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

Haar wellen - Übersetzung nach Englisch

THE FIRST WAVELET
Haar function; Haar transform; Haar basis; Rademacher function; Haar basis functions; Haar Wavelet

Haar wellen      
wave one's hair, curl one's hair; marcel, set hair in waves, curl
ripple      
n. Welle (ngekräusel); (Haar-) Welle
wave one's hair      
sein Haar wellen

Definition

Haar
·noun A fog; ·esp., a fog or mist with a chill wind.

Wikipedia

Haar wavelet

In mathematics, the Haar wavelet is a sequence of rescaled "square-shaped" functions which together form a wavelet family or basis. Wavelet analysis is similar to Fourier analysis in that it allows a target function over an interval to be represented in terms of an orthonormal basis. The Haar sequence is now recognised as the first known wavelet basis and is extensively used as a teaching example.

The Haar sequence was proposed in 1909 by Alfréd Haar. Haar used these functions to give an example of an orthonormal system for the space of square-integrable functions on the unit interval [0, 1]. The study of wavelets, and even the term "wavelet", did not come until much later. As a special case of the Daubechies wavelet, the Haar wavelet is also known as Db1.

The Haar wavelet is also the simplest possible wavelet. The technical disadvantage of the Haar wavelet is that it is not continuous, and therefore not differentiable. This property can, however, be an advantage for the analysis of signals with sudden transitions (discrete signals), such as monitoring of tool failure in machines.

The Haar wavelet's mother wavelet function ψ ( t ) {\displaystyle \psi (t)} can be described as

ψ ( t ) = { 1 0 t < 1 2 , 1 1 2 t < 1 , 0 otherwise. {\displaystyle \psi (t)={\begin{cases}1\quad &0\leq t<{\frac {1}{2}},\\-1&{\frac {1}{2}}\leq t<1,\\0&{\mbox{otherwise.}}\end{cases}}}

Its scaling function φ ( t ) {\displaystyle \varphi (t)} can be described as

φ ( t ) = { 1 0 t < 1 , 0 otherwise. {\displaystyle \varphi (t)={\begin{cases}1\quad &0\leq t<1,\\0&{\mbox{otherwise.}}\end{cases}}}